

Public Assessment Report

Scientific discussion

Mebeverine Aristo 200 mg modified release capsules, hard

(mebeverine hydrochloride)

NL/H/4476/001/DC

Date: 14 November 2019

This module reflects the scientific discussion for the approval of Mebeverine Aristo 200 mg modified release capsule, hard. The procedure was finalised at 26 September 2019. For information on changes after this date please refer to the 'steps taken after finalisation' at the end of this PAR.

List of abbreviations

ASMF Active Substance Master File	
CHMP Committee for Medicinal Products for Human Use	
CMD(h) Coordination group for Mutual recognition and Decentrali procedure for human medicinal products	sed
CMS Concerned Member State	
EDMF European Drug Master File	
EDQM European Directorate for the Quality of Medicines	
EEA European Economic Area	
ERA Environmental Risk Assessment	
ICH International Conference of Harmonisation	
MAH Marketing Authorisation Holder	
Ph.Eur. European Pharmacopoeia	
PL Package Leaflet	
RH Relative Humidity	
RMP Risk Management Plan	
SmPC Summary of Product Characteristics	
TSE Transmissible Spongiform Encephalopathy	

I. INTRODUCTION

Based on the review of the quality, safety and efficacy data, the Member States have granted a marketing authorisation for Mebeverine Aristo 200 mg modified release capsules, hard from Aristo Pharma GmbH.

The product is indicated for the symptomatic relief of irritable bowel syndrome in adult patients.

A comprehensive description of the indications and posology is given in the SmPC.

This decentralised procedure concerns a generic application claiming essential similarity with the innovator product Colofac retard 200 mg capsules which has been registered in Austria by BGP Products GmbH since 27 January 2000 (original product). In the Netherlands, the quantitative composition of this product is the same as Duspatal Retard 200 mg, modified release capsules which has been registered by Abbott B.V. since 12 August 1987 through a national procedure.

The concerned member states (CMS) involved in this procedure were Austria, Germany, Denmark, Poland, and Portugal.

The marketing authorisation has been granted pursuant to Article 10(1) of Directive 2001/83/EC.

II. QUALITY ASPECTS

II.1 Introduction

Mebeverine Aristo is a hard modified-release capsule. The capsules have a creamy white body and cap. They are filled with white to off white spherical pellets. Each capsule contains as active substance 200 mg of mebeverine hydrochloride.

The product is packed in PVC/PVDC-Al blisters.

The excipients are: *Core* - sugar spheres (sucrose, maize), povidone (E1201), hypromellose (E464) *Coating* - ethyl cellulose N-45, macrogol 6000 (E1521), magnesium stearate (E470b) *Capsule* - gelatin, titanium dioxide (E171)

II.2 Drug Substance

The active substance is mebeverine hydrochloride, an established active substance described in the British and European Pharmacopoeia (Ph.Eur.). The active substance is very soluble in water and in methylene chloride, and freely soluble in ethanol (96%). It has a pKa value of 10.7. Mebeverine hydrochloride has a chiral carbon in its chemical structure; hence it can exhibit optical isomerism, however, the substance is produced as a racemate. It has been demonstrated that the same polymorphic form is manufactured consistently.

The Active Substance Master File (ASMF) procedure is used for the active substance. The main objective of the ASMF procedure, commonly known as the European Drug Master File (EDMF) procedure, is to allow valuable confidential intellectual property or 'know-how' of the manufacturer of the active substance (ASM) to be protected, while at the same time allowing the applicant or marketing authorisation holder (MAH) to take full responsibility for the medicinal product, the quality and quality control of the active substance. Competent Authorities/EMA thus have access to the complete information that is necessary to evaluate the suitability of the use of the active substance in the medicinal product.

Manufacturing process

The active substance is manufactured from two key intermediates. The active substance has been adequately characterized and acceptable specifications have been adopted for the starting materials, intermediates, solvents and reagents.

Quality control of drug substance

The active substance specification is considered adequate to control the quality and meets the requirements of the monograph in the Ph.Eur. Batch analytical data demonstrating compliance with this specification have been provided for three batches.

Stability of drug substance

Stability data on the active substance have been provided for three commercial batches stored at 25°C/60% RH (60 months) and 40°C/75% RH (six months). Additionally, stability data of three commercial batches of mebeverine hydrochloride (six months accelerated and 24 months long-term stability) were also provided. The drug substance remained stable. There are no significant changes or unexpected results observed. Based on the available stability data, a retest period could be granted of 60 months when stored in a well closed container at room temperature.

II.3 Medicinal Product

Pharmaceutical development

The product is an established pharmaceutical form and its development is adequately described in accordance with the relevant European guidelines. The choice of excipients is justified and their functions explained. Several development studies have been performed related to the characterization of reference product, choice and quantity of the excipients,

choice of the manufacturing formula and process and *in vitro* comparative study with the reference product.

Three bioequivalence studies versus the EU reference product Colofac Retard have been performed. Batches used in the bioequivalence studies were manufactured according to the finalized composition and manufacturing process. The pharmaceutical development of the product has been adequately performed.

Manufacturing process

The manufacturing process has been adequately described and validated according to relevant European/ICH guidelines. Process validation data on the product have been presented for three batches in accordance with the relevant European guidelines.

Control of excipients

All excipients comply with the Ph.Eur., except for the empty hard gelatin capsule. These specifications are acceptable.

Quality control of drug product

The finished product specifications are adequate to control the relevant parameters for the dosage form. The specification includes tests for appearance, identity, average fill weight, uniformity of fill weight, uniformity of dosage units, water content, dissolution, related substances, assay, residual solvents and microbial quality. Limits in the specification have been justified and are considered appropriate for adequate quality control of the product. Satisfactory validation data for the analytical methods have been provided. Batch analytical data from three batches from the proposed production site have been provided, demonstrating compliance with the specification.

Stability of drug product

Stability data on the product have been provided for three full scaled batches stored at 25°C/60% RH (36 months), 30°C/65% RH (12 months) and 40°C/75% RH (six months). The conditions used in the stability studies are according to the ICH stability guideline. At long term and intermediate conditions the product remains stable, there are no specific trends or out of specification results obtained. However, at accelerated conditions, significant changes and out of specification results are obtained after six months for dissolution, individual unknown impurity and total impurities.

On basis of the data submitted, a shelf life was granted of 36 months. The labelled storage condition is "Store below 30°C in the original package in order to protect from moisture".

<u>Specific measures concerning the prevention of the transmission of animal spongiform</u> <u>encephalopathies</u>

There are no substances of ruminant animal origin present in the product nor have any been used in the manufacturing of this product, so a theoretical risk of transmitting TSE can be excluded.

II.4 Discussion on chemical, pharmaceutical and biological aspects

Based on the submitted dossier, the member states consider that Mebeverine Aristo has a proven chemical-pharmaceutical quality. Sufficient controls have been laid down for the active substance and finished product.

No post-approval commitments were made.

III. NON-CLINICAL ASPECTS

III.1 Ecotoxicity/environmental risk assessment (ERA)

Since Mebeverine Aristo is intended for generic substitution, this will not lead to an increased exposure to the environment. An environmental risk assessment is therefore not deemed necessary.

III.2 Discussion on the non-clinical aspects

This product is a generic formulation of Colofac retard which is available on the European market. Reference is made to the preclinical data obtained with the innovator product. A non-clinical overview on the pharmacology, pharmacokinetics and toxicology has been provided, which is based on up-to-date and adequate scientific literature. The overview justifies why there is no need to generate additional non-clinical pharmacology, pharmacokinetics and toxicology data. Therefore, the member states agreed that no further non-clinical studies are required.

IV. CLINICAL ASPECTS

IV.1 Introduction

Mebeverine hydrochloride is a well-known active substance with established efficacy and tolerability. A clinical overview has been provided, which is based on scientific literature. The overview justifies why there is no need to generate additional clinical data. Therefore, the member states agreed that no further clinical studies are required.

For this generic application, the MAH has submitted three bioequivalence studies, which are discussed below.

IV.2 Pharmacokinetics

The MAH conducted three bioequivalence studies in which the pharmacokinetic profile of the test product Mebeverine Aristo 200 mg modified release capsules, hard (Aristo Pharma GmbH, Germany) is compared with the pharmacokinetic profile of the reference product Colofac retard 200 mg capsules (Abbott Products GmbH, Austria).

Reference product

The choice of the reference product in the bioequivalence studies has been justified. The formula and preparation of the bioequivalence batch is identical to the formula proposed for marketing.

Analytical/statistical methods

The analytical method has been adequately validated and is considered acceptable for analysis of the plasma samples. The methods used in these studies for the pharmacokinetic calculations and statistical evaluation are considered acceptable. The MAH analysed four metabolites (veratric acid, mebeverine acid, and desmethyl mebeverine acid, desmethyl mebeverine alcohol). Veratric acid is considered the pivotal analyte for bioequivalence evaluation.

IV.2.1 Single and multiple dose, under fasting conditions (010-15-GLB) *Design*

An open-label, randomized, balanced, two-treatment, two-period, two-sequence, two-way crossover, single and multiple dose (steady state), oral bioequivalence study was carried out under fasted conditions in 50 healthy male subjects, aged 20-40 years. Subjects received a single dose (200 mg) of the test and reference mebeverine retard formulation at day 1 and thereafter at day 3, twice daily for days 3-5, one in the morning and one in the evening, with an interval of 12 hours between doses, and at day 6, once in the morning. The capsules were orally administered in solid form with 240 ml water under fasting conditions. The wash-out period was 6 days.

At day 1, blood samples were collected pre-dose and at 0.5, 1, 1.33, 1.67, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.5, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 and 36 hours after administration of the products. At day 3 to 5 pre-dose (morning dose) and at day 6 at pre-dose and at 0.5, 1, 1.33, 1.67, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.5, 5, 6, 8, 10 and 12 h after the administration of the products.

The design of the single and multiple dose, crossover study to assess bioequivalence is considered adequate.

Results

One subject did not report for period II. Therefore, 49 subjects were eligible for pharmacokinetic analysis.

Single dose

Table 1. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of veratric acid under fasted conditions after a single dose.

Treatment	AUC _{0-t}	AUC _{0-∞}	C _{max}	t _{max}	t _{1/2}		
N=49	(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)		
Test	18052.443 ±	19012.023 ±	2232.242 ±	2.750 ±	4.248 ±		
Test	5612.678	6010.118	490.755	0.914	1.644		
Reference	18152.777 ±	19108.576 ±	2189.763 ±	2.500 ±	4 250 + 2 15		
Reference	6257.370	7101.608	576.664	0.902	4.250 ± 3.15		
*Ratio	1.00	1.01	1.04				
(90% CI)	(0.94 – 1.08)	(0.94 – 1.08)	(0.96 – 1.10)				
CV (%)	19.8	21.3	20.8				
AUC _{0-∞} area un	der the plasma o	concentration-ti	me curve from t	time zero to inf	inity		
AUC _{0-t} area un	der the plasma o	concentration-ti	me curve from t	time zero to t h	ours		
C _{max} maximu	maximum plasma concentration						
t _{max} time fo	time for maximum concentration						
t _{1/2} half-life	!						

coefficient of variation CV

*In-transformed values

Table 2. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of mebeverine acid under fasted conditions after a single dose.

Treatm	ent	AUC _{0-t}	AUC₀-∞	C _{max}	t _{max}	t _{1/2}	
N=49		(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)	
Test		633.678 ±	654.607 ±	119.271 ±	2.500 ±	3.948 ±	
Test		319.694	324.845	49.551	0.785	2.110	
Referer		116.400 ±	614.777 ±	116.400 ±	2.500 ±	3.281 ±	
Referen	ice	73.130	351.282	73.130	0.933	1.377	
*Ratio		1.05	1.06	1.08			
(90% C)	(0.97 – 1.14)	(0.98 – 1.15)	(0.97 – 1.20)			
CV (%)	CV (%) 24.2		24.2	32.4			
AUC _{0-∞}	area uno	der the plasma o	concentration-ti	me curve from	time zero to inf	inity	
AUC _{0-t}	area uno	der the plasma o	concentration-ti	me curve from	time zero to t h	ours	
C _{max}	maximum plasma concentration						
t _{max}	time for maximum concentration						
t _{1/2}	half-life						
CV	coefficie	ent of variation					

Table 3. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of desmethyl-mebeverine acid under fasted conditions after a single dose.

Treatment		AUC _{0-t}	AUC₀-∞	C _{max}	t _{max}	t _{1/2}	
N=49		(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)	
Tost		1992.637 ±	2104.717 ±	263.330 ±	3.000 ±	4.325 ±	
Test		604.074	663.913	82.818	1.010	1.881	
Reference		1989.528 ±	2102.934 ±	254.467 ±	3.250 ±	4.227 ±	
Reference		672.696	703.961	94.680	1.027	1.604	
*Ratio		1.02	1.01	1.06			
(90% CI)		(0.95 – 1.09)	(0.94 – 1.09)	(0.98 – 1.13)			
CV (%) 20.7		21.3	21.7				
AUC₀-∞ are	a un	der the plasma o	concentration-ti	me curve from	time zero to inf	inity	
AUC _{0-t} are	a un	der the plasma o	concentration-ti	me curve from	time zero to t h	ours	
C _{max} ma	kimu	m plasma conce	entration				
t_{max} tim	time for maximum concentration						
t _{1/2} hal	half-life						
CV coe	coefficient of variation						
*In tr	incf	ormed values					

*In-transformed values

Table 4. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of desmethyl-mebeverine alcohol under fasted conditions after a single dose.

Treatm	ent	AUC _{0-t}	AUC₀-∞	C _{max}	t _{max}	t _{1/2}
N=49		(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)
Tost		33.411 ±	35.500 ±	4.677 ± 2.159	4.500 ±	4.606 ±2.089
Test		15.427	16.015	4.077 ± 2.159	1.764	4.000 ±2.089
Referer		31.621 ±	33.825 ±	4.495 ± 2.408	4.500 ±	4.652 ± 2.100
Referen	ice	16.330	16.866	4.495 ± 2.408	2.323	4.052 ± 2.100
*Ratio		1.07	1.06	1.07		
(90% CI)	(0.98 – 1.17)	(0.98 – 1.15)	(0.97 – 1.19)		
CV (%)	CV (%) 25.2		25.0	30.4		
AUC _{0-∞}	area uno	der the plasma o	concentration-ti	ime curve from	time zero to in	finity
AUC _{0-t}	area uno	der the plasma o	concentration-ti	ime curve from	time zero to t h	nours
C _{max}	maximu	m plasma conce	entration			
t _{max}	time for maximum concentration					
t _{1/2}	half-life					
CV	coefficie	ent of variation				

Multiple dose (steady state)

Table 5. Pharmacokinetic parameters in steady-state of veratric acid (nontransformed values; arithmetic mean ± SD)

Treatment	AUC _τ	C _{max}	Cτ	PTF%					
N=49	(ng/ml/h)	(ng/ml)	(ng/ml)	(%)					
Test	18214.765 ±	2821.320 ±	853.735 ±	146.286 ± 45.748					
Test	5701.271	856.296	364.196	140.280 ± 45.748					
Reference	19779.437 ±	2863.490 ±	835.505 ±	137.26 ± 36.683					
Reference	7708.215	881.190	464.982	157.20 ± 50.085					
*Ratio	0.94	0.99	1.07						
(90% CI)	(0.90 – 0.98)	(0.94 – 1.05)	(0.97 – 1.17)						
CV (%)	13.2	15.7 27.9							
C _{max} maxin C _τ plasm PTF% fluctu	AUC _τ area under the plasma concentration-time curve over the dosing interval C _{max} maximum plasma concentration C _τ plasma concentration over the dosing interval								
CV coeffi	cient of variation								

*In-transformed values

Table 6. Pharmacokinetic parameters in steady-state of mebeverine acid (nontransformed values; arithmetic mean ± SD)

Treatm	nent	AUCτ	C _{max}	Cτ	PTF%	
N=49		(ng/ml/h)	(ng/ml)	(ng/ml)	(%)	
Test		998.031 ± 449.673	199.049 ± 74.967	32.998 ± 24.158	221.267 ± 62.364	
Reference		1038.382 ± 528.783	195.584 ± 82.611	30.354 ± 25.093	214.299 ± 72.361	
*Ratio		0.99	1.03	1.17		
(90% C	CI)	(0.94 – 1.04)	(0.95 – 1.12)	.95 – 1.12) (1.05 – 1.30)		
CV (%)	CV (%) 15.0		23.8	32.8		
AUC _τ	area un	der the plasma co	oncentration-time	curve over the do	osing interval	
C _{max}	maximu	ım plasma concen	itration			
Cτ	plasma	concentration over	er the dosing inter	rval		
PTF%	fluctuation index					
CV	coefficie	ent of variation				
*1	n transfo	rmed values				

Pharmacokinetic parameters in steady-state of desmethyl-mebeverine acid Table 7. (non-transformed values; arithmetic mean ± SD)

Treatment	AUCτ	C _{max}	Cτ	PTF%
N=49	(ng/ml/h)	(ng/ml)	(ng/ml)	(%)
Test	1716.184 ± 450.048	267.711 ± 67.050	86.857 ± 31.848	149.220 ± 36.687
Reference	1857.244 ± 579.243	273.203 ± 75.050	3.203 ± 75.050 77.868 ± 40.514	
*Ratio (90% CI)	0.94 (0.90 – 0.98)	0.99 (0.94 – 1.03)	1.16 (1.04 – 1.30)	
CV (%)	12.6	13.3	33.3	
AUC _r area un	der the plasma co	ncentration-time	curve over the do	osing interval

Cmax maximum plasma concentration

plasma concentration over the dosing interval Cτ

PTF% fluctuation index

coefficient of variation CV

*In-transformed values

Table 8. Pharmacokinetic parameters in steady-state of desmethyl-mebeverine alcohol (non-transformed values; arithmetic mean ± SD)

Treatment	AUCτ	C _{max}	Cτ	PTF%				
N=49	(ng/ml/h)	(ng/ml)	(ng/ml)	(%)				
Test	24.429 ± 8.713	3.829 ± 1.351	1.294 ± 0.637	146.513 ± 42.389				
Reference	26.145 ± 9.858	3.957 ± 1.597	1.207 ± 0.653	140.625 ± 44.3				
*Ratio (90% CI)	0.94 (0.89 – 0.99)	0.98 (0.90 – 1.06)	1.11 (0.99 – 1.25)					
CV (%)	16.7	24.7	34.5					
AUC _τ area under the plasma concentration-time curve over the dosing interval C _{max} maximum plasma concentration C _τ plasma concentration over the dosing interval								
PTF% fluctuat	fluctuation index							

coefficient of variation CV

*In-transformed values

Conclusion

Based on the submitted bioequivalence study under fasting conditions, after single dose, Mebeverine Aristo is considered bioequivalent with Colofac retard. Bioequivalence has been shown for veratric acid AUC_{0-t}, AUC_{0- ∞} and C_{max} within normal criteria.

In addition, at steady state, the Mebeverine Aristo is considered bioequivalent with Colofac retard. Bioequivalence has been shown for veratric acid AUC_{0- τ}, C_{max.ss} and C_{τ .ss} within normal criteria.

IV.2.2 Single dose, under fed conditions (202-11-EM)

Design

An open-label, randomized, balanced, two-treatment, two-period, two-sequence, two-way crossover bioequivalence study was carried out under fasted conditions in 40 healthy male subjects, aged 19-41 years. Subjects received a single dose (200 mg) of the test and reference mebeverine retard formulation. The capsules were orally administered in solid form with 240 ml water 30 minutes after the start of intake of a high fat high caloric breakfast. The wash-out period was 7 days.

Blood samples were collected pre-dose and at 0.5, 1, 1.33, 1.67, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.5, 5, 6, 8, 10, 12, 24 and 36 hours after administration of the products.

The design of the single dose, crossover study under fed conditions to assess bioequivalence is considered adequate.

Results

Two subjects were withdrawn due to protocol violation (not retaining posture and toilet restrictions), two subjects did not report for period II and one subject was withdrawn as he was found positive for drug abuse. Therefore, 35 subjects were eligible for pharmacokinetic analysis.

Treatment	AUC _{0-t}	AUC₀₋∞	C _{max}	t _{max}	t _{1/2}		
N=35	(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)		
Test	24408.554 ±	30827.247 ±	3685.141 ±	4 5 1 0 692	8.631 ±		
Test	9075.959	9598.623	1462.316	4.5 ± 0.682	4.819		
Reference	24019.649 ±	31353.338 ±	3970.864 ±	4.5 ± 0.609	8.577 ± 7191		
Reference	8445.257	11795.830	1497.592	4.5 ± 0.009	8.577 ± 7191		
*Ratio	1.01	1.01	0.91				
(90% CI)	(0.94 – 1.09)	(0.92 – 1.10)	(0.83 – 1.00)				
CV (%) 18.7		22.9	23.8				
AUC _{0-∞} area uno	der the plasma o	concentration-ti	me curve from t	ime zero to inf	inity		
AUC _{0-t} area und	der the plasma o	concentration-ti	me curve from t	ime zero to t h	ours		
C _{max} maximu	m plasma conce	entration					
t _{max} time for	time for maximum concentration						
$t_{1/2}$ half-life	half-life						
CV coefficie	coefficient of variation						

Table 9. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of veratric acid under fed conditions.

in-transformea values

Table 10. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of mebeverine acid under fed conditions.

Treatm	ent	AUC _{0-t}	AUC _{0-∞}	C _{max}	t _{max}	t _{1/2}
N=35		(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)
Tost		373.377 ±	966.487 ±	105.037 ±	4.500 ±	0.351 ±
Test		387.636	2514.106	86.857	0.565	0.184
Deferer		383.969 ±	511.999 ±	121.158 ±	4.500 ±	2.365 ±
Referer	nce	349.439	364.036	103.190	0.578	1.762
*Ratio		0.91	1.08	0.88		
(90% CI)	(0.78 – 1.07)	(0.85 – 1.37)	(0.77 – 1.01)		
CV (%) 39.0 57.8		32.6				
AUC _{0-∞}	area uno	der the plasma o	concentration-ti	me curve from	time zero to inf	inity
AUC _{0-t}	area uno	der the plasma o	concentration-ti	me curve from	time zero to t h	ours
C _{max}	maximu	m plasma conce	entration			
t _{max}	time for maximum concentration					
t _{1/2}	half-life					
CV	coefficie	ent of variation				

*In-transformed values

Table 11. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of desmethyl-mebeverine acid under fed conditions.

Treatm	ent	AUC _{0-t}	AUC₀-∞	C _{max}	t _{max}	t _{1/2}
N=35		(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)
Toct		4107.797 ±	4816.154 ±	751.878 ±	4.500 ±	7.241 ±
Test		872.341	925.072	209.793	0.726	3.220
Refere		4320.705 ±	4935.871 ±	831.273 ±	4.500 ±	7.103 ±
Refere	nce	1096.578	1220.935	259.544	0.670	3.527
*Ratio		0.96	0.98	0.91		
(90% C	I)	(0.90 – 1.01)	(0.93 – 1.04)	(0.80 – 1.04)		
CV (%) 14.9 14.0 32.2						
AUC _{0-∞}	area uno	der the plasma o	concentration-ti	me curve from	time zero to inf	inity
AUC _{0-t}	area uno	der the plasma o	concentration-ti	me curve from	time zero to t h	ours
C _{max}	maximu	m plasma conce	entration			
t _{max}	time for maximum concentration					
t _{1/2}	half-life					
CV	coefficie	ent of variation				

Table 12.Pharmacokinetic parameters (non-transformed values; arithmetic mean ±
SD, t_{max} (median, range)) of desmethyl-mebeverine alcohol under fed
conditions.

Treatment	AUC _{0-t}	AUC₀₋∞	C _{max}	t _{max}	t _{1/2}		
N=35	(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)		
Toot	48.668 ±	55.107 ±	9.371 ± 4.427	4.500 ±	5.764 ±		
Test	19.462	18.693	9.571 ± 4.427	0.661	6.109		
Reference	47.506 ±	52.304 ±	10.799 ±	4.500 ±	3.045 ±		
Reference	19.477	18.023	5.304	0.397	1.068		
*Ratio	1.04	1.09	0.86				
(90% CI)	(0.97 – 1.11)	(1.03 – 1.16)	(0.78 – 0.96)				
CV (%) 16.0		14.4	25.7				
AUC₀-∞ area u	$AUC_{0.\infty}$ area under the plasma concentration-time curve from time zero to infinity						
AUC _{0-t} area u	JUC _{0-t} area under the plasma concentration-time curve from time zero to t hours						
C _{max} maxim	maximum plasma concentration						
t _{max} time f	time for maximum concentration						
t _{1/2} half-lif	half-life						
CV coeffic	coefficient of variation						

*In-transformed values

Conclusion

Based on the submitted bioequivalence study under fed conditions, Mebeverine Aristo is considered bioequivalent with Colofac retard. Bioequivalence has been shown for veratric acid AUC_{0-t} , $AUC_{0-\infty}$ and C_{max} within normal criteria.

IV.2.3 Single dose, under fed conditions (014-16-GLB)

Design

An open-label, randomized, balanced, two-treatment, two-period, two-sequence, two-way crossover bioequivalence study was carried out under fasted conditions in 32 healthy male subjects, aged 21-40 years. Subjects received a single dose (200 mg) of the test and reference mebeverine retard formulation. The capsules were orally administered in solid form with 240 ml water 30 minutes after the start of intake of a high fat high caloric breakfast. The wash-out period was 7 days.

Blood samples were collected pre-dose and at 0.5, 1, 1.33, 1.67, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.5, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 and 36 hours after administration of the products.

The design of the additional single dose, crossover study to assess bioequivalence under fed conditions is considered adequate.

Results

One subject did not report for period II. Therefore, 31 subjects were eligible for pharmacokinetic analysis.

Table 13. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of veratric acid under fed conditions.

Treatment	AUC _{0-t}	AUC _{0-∞}	C _{max}	t _{max}	t _{1/2} (h)	
N=31	(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)		
Tost	17589 ±	18386.315 ±	2878.353 ±	4.500 ±	5.249 ±	
Test	4508.854	4477.396	894.263	0.712	8.036	
Reference	17861.790 ±	18461.984 ±	284.665 ±	4.500 ±	3.736 ±	
Reference	4214.794	4259.609	635.649	0.583	1.721	
*Ratio	0.98	0.99	0.99			
(90% CI)	(0.93 – 1.04)	(0.94 – 1.04)	(0.90 – 1.08)			
CV (%) 12.87		11.65	21.09			
$AUC_{0-\infty}$ area under the plasma concentration-time curve from time zero to infinity						
AUC _{0-t} area	AUC _{0-t} area under the plasma concentration-time curve from time zero to t hours					
C _{max} maxi	maximum plasma concentration					
t _{max} time	time for maximum concentration					
t _{1/2} half-l	half-life					
CV coeff	coefficient of variation					
*In transformed values						

*In-transformed values

Table 14. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of mebeverine acid under fed conditions.

Treatm	reatment AUC ₀		AUC _{0-∞} C _{max}		t _{max}	t _{1/2}	
N=31		(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)	
Tost		462.362 ±	473.972 ±	111.117 ±	4.500 ±	2.803 ±	
Test		199.169	198.067	49.403	0.651	1.381	
Refere		427.400 ±	481.898 ±	108.417 ±	4.500 ±	2.064 ±	
Refere	nce	247.417	247.167	42.727	0.582	0.542	
*Ratio		1.00	1.00	0.99			
(90% CI)		(0.93 – 1.06)	(0.94 – 1.06)	(0.89 – 1.11)			
CV (%)	V (%) 14.96 14.32 25.82						
AUC _{0-∞}	AUC ₀ area under the plasma concentration-time curve from time zero to infinity						
AUC _{0-t}	AUC _{0-t} area under the plasma concentration-time curve from time zero to t hours						
C _{max}	maximum plasma concentration						
t _{max}	time for maximum concentration						
t _{1/2}	half-life						
CV	coefficient of variation						

Table 15. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of desmethyl-mebeverine acid under fed conditions.

AUC _{0-t}	AUC _{0-∞}	C _{max}	t _{max}	t _{1/2}		
(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)		
5150.689 ±	5259.772 ±	989.333 ±	4.500 ±	3.695 ±		
1311.020	1353.242	361.273	0.887	1.032		
5151.865 ±	5237.150 ±	984.633 ±	4.500 ±	0.500 ±		
1223.168	1260.305	286.815	0.635	0.258		
0.99	1.00	0.98				
(0.95 – 1.04)	(0.95 – 1.04)	(0.89 – 1.07)				
CV (%) 10.80 10.97 21.04						
$AUC_{0-\infty}$ area under the plasma concentration-time curve from time zero to infinity						
AUC _{0-t} area under the plasma concentration-time curve from time zero to t hours						
maximum plasma concentration						
time for maximum concentration						
half-life						
coefficient of variation						
a a x e f	(ng.h/ml) 5150.689 ± 1311.020 5151.865 ± 1223.168 0.99 (0.95 - 1.04) 10.80 a under the plasma a under the plasma a under the plasma a under the plasma conc e for maximum conc f-life efficient of variation	(ng.h/ml) (ng.h/ml) 5150.689 ± 5259.772 ± 1311.020 1353.242 5151.865 ± 5237.150 ± 1223.168 1260.305 0.99 1.00 (0.95 - 1.04) (0.95 - 1.04) 10.80 10.97 a under the plasma concentration-ti ximum plasma concentration e for maximum concentration f-life efficient of variation	(ng.h/ml) (ng.h/ml) (ng/ml) 5150.689 ± 5259.772 ± 989.333 ± 1311.020 1353.242 361.273 5151.865 ± 5237.150 ± 984.633 ± 1223.168 1260.305 286.815 0.99 1.00 0.98 (0.95 - 1.04) (0.95 - 1.04) (0.89 - 1.07) 10.80 10.97 21.04 a under the plasma concentration-time curve from a under the plasma concentration-time curve from simum plasma concentration from aximum concentration e for maximum concentration from aximum concentration from aximum concentration	(ng.h/ml) (ng.h/ml) (ng/ml) (h) 5150.689 ± 5259.772 ± 989.333 ± 4.500 ± 1311.020 1353.242 361.273 0.887 5151.865 ± 5237.150 ± 984.633 ± 4.500 ± 1223.168 1260.305 286.815 0.635 0.99 1.00 0.98 (0.95 - 1.04) (0.95 - 1.04) (0.89 - 1.07) 10.80 10.97 21.04 a under the plasma concentration-time curve from time zero to inf a under the plasma concentration-time curve from time zero to the ximum plasma concentration e for maximum concentration e for maximum concentration e for maximum concentration		

**In-transformed values*

Table 16. Pharmacokinetic parameters (non-transformed values; arithmetic mean ± SD, t_{max} (median, range)) of desmethyl-mebeverine alcohol under fed conditions.

Treatm	ent	AUC _{0-t}	AUC₀-∞	C _{max}	t _{max}	t _{1/2}	
N=31		(ng.h/ml)	(ng.h/ml)	(ng/ml)	(h)	(h)	
Test		26.742 ±	28.250 ±	5.759 ± 2.232	4.500 ±	0.737 ± 0.355	
Test		10.314	10.452	5.759 ± 2.252	0.998	0.757±0.355	
Reference		27.111 ±	28.305 ±	5.820 ± 2.276	4.500 ±	2.967 ±0.970	
		11.349	11.452	5.820 ± 2.270	0.802		
*Ratio		1.00	1.01	0.99			
(90% CI)		(0.93 – 1.07)	(0.94 – 1.08)	(0.89 – 1.12)			
CV (%)	CV (%) 16.34		16.00	27.08			
AUC _{0-∞}	AUC _{0-∞} area under the plasma concentration-time curve from time zero to infinity						
AUC _{0-t}	C_{0-t} area under the plasma concentration-time curve from time zero to t hours						
C _{max}	maximum plasma concentration						
t _{max}	time for maximum concentration						
t _{1/2}	half-life						
CV	coefficient of variation						
*In-transformed values							

Conclusion

Based on the submitted bioequivalence study under fed conditions, Mebeverine Aristo is considered bioequivalent with Colofac retard. Bioequivalence has been shown for veratric acid AUC_{0-t}, AUC_{0- ∞} and C_{max} within normal criteria.

Conclusion on bioequivalence studies

The 90% confidence intervals calculated for AUC_{0-t}, AUC_{0- ∞}, C_{max}, AUC_{0- τ}, C_{max,ss} and C_{τ ,ss} for veratric acid are within the bioequivalence acceptance range of 0.80 - 1.25. Based on the submitted bioequivalence studies Mebeverine Aristo is considered bioequivalent with Colofac retard.

The MEB has been assured that the bioequivalence study has been conducted in accordance with acceptable standards of Good Clinical Practice (GCP, see Directive 2005/28/EC) and Good Laboratory Practice (GLP, see Directives 2004/9/EC and 2004/10/EC).

IV.3 Risk Management Plan

The MAH has submitted a risk management plan, in accordance with the requirements of Directive 2001/83/EC as amended, describing the pharmacovigilance activities and interventions designed to identify, characterise, prevent or minimise risks relating to Mebeverine Aristo.

Important identified risks	Hypersensitivity reactions including anaphylactic reactions
	 Skin reactions including urticarial, angioedema, face oedema, exanthema
Important potential risks	None
Missing information	Use in pregnancy and breastfeeding women
	Limited data on male or female infertility
	Use in paediatric population

Table 17. Summary table of safety concerns as approved in RMP

The member states agreed that routine pharmacovigilance activities and routine risk minimisation measures are sufficient for the risks and areas of missing information.

IV.4 Discussion on the clinical aspects

For this authorisation, reference is made to the clinical studies and experience with the innovator product Colofac retard. No new clinical studies were conducted. The MAH demonstrated through bioequivalence studies that the pharmacokinetic profile of the

product is similar to the pharmacokinetic profile of this reference product. Risk management is adequately addressed. This generic medicinal product can be used instead of the reference product.

V. USER CONSULTATION

The package leaflet (PL) has been evaluated via a user consultation study in accordance with the requirements of Articles 59(3) and 61(1) of Directive 2001/83/EC. The test consisted of: a pilot test with two participants, followed by two rounds with ten participants each. The questions covered the following areas sufficiently: traceability, comprehensibility and applicability. The results show that the PL meets the criteria for readability as set out in the Guideline on the readability of the label and PL of medicinal products for human use.

VI. OVERALL CONCLUSION, BENEFIT/RISK ASSESSMENT AND RECOMMENDATION

Mebeverine Aristo 200 mg modified release capsules, hard has a proven chemicalpharmaceutical quality and is a generic form of Colofac retard 200 mg capsule. Colofac retard is a well-known medicinal product with an established favourable efficacy and safety profile.

Bioequivalence has been shown to be in compliance with the requirements of European guidance documents.

The Board followed the advice of the assessors.

There was no discussion in the CMD(h). Agreement between member states was reached during a written procedure. The member states, on the basis of the data submitted, considered that essential similarity has been demonstrated for Mebeverine Aristo with the reference product, and have therefore granted a marketing authorisation. The decentralised procedure was finalised with a positive outcome on 26 September 2019.

STEPS TAKEN AFTER THE FINALISATION OF THE INITIAL PROCEDURE -**SUMMARY**

Procedure number*	Scope	Product Informatio n affected	Date of end of procedure	Approval/ non approval	Summary/ Justification for refuse